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Abstract. We describe a new example of a flop in 5-dimensions, due to

Roland Abuaf, with the nice feature that the contracting loci on either side
are not isomorphic. We prove that the two sides are derived equivalent.

MSC2010 classes: 14E05, 13D09.

1. Introduction and result

Let V be a 4-dimensional complex vector space, with a fixed symplectic form.
From this data we construct two non-compact Calabi-Yau 5-folds, as follows. Let
LGr(V ) denote the Grassmannian of Lagrangian subspaces of V , which is a quadric
3-fold, and let S ⊂ V denote the tautological vector bundle over LGr(V ). Our first
5-fold is the total space of a rank 2 vector bundle:

X+ = Tot
(
S ⊗∧2S −→ LGr(V )

)
Now consider PV , and let L denote the usual tautological line bundle. We let L⊥

denote the rank 3 vector bundle given by the symplectic orthogonal to L, and note
that it contains L as a subbundle. Our second 5-fold is:

X− = Tot
(
(L⊥/L)⊗ L2 −→ PV

)
Theorem 1.1. X+ and X− are birational Calabi-Yaus, and they are derived equiv-
alent.

The fact that both X+ and X− are Calabi-Yau is a routine calculation, and the
fact that they are birational is an elementary piece of geometry (see Section 2.1).
An interesting feature of this example is that the contracting loci on either side are
not isomorphic, since one is PV and the other is LGr(V ). This is in contrast to
the case of standard (Atiyah) flops, or Mukai flops. It is not difficult to construct
examples of flops with this feature by using families of standard or Mukai flops, or
by allowing one side to be an orbifold, however if one rules out those constructions
then we believe that this is the first such example to appear in the literature.

The technical content of the above theorem is the fact that X+ and X− are
derived equivalent. This result is yet another piece of evidence in favour of the
well-known conjectures of Bondal–Orlov [BO] and Kawamata [Kaw], which state
that two birational and K-equivalent varieties should be derived equivalent. For this
example the argument is not difficult, we simply construct tilting bundles on each
space which have the same endomorphism algebra. The proof is given in Sections
2.2 and 2.3 below.

I had originally hoped to give a proof of this result using the theory of derived
categories and Variation-of-GIT, as developed by [BFK, HL] following [Seg]. How-
ever, although it is not difficult to construct GIT problems producing both X+

and X−, I could not find one satisfying the necessary hypotheses. It would be
interesting to see a second proof along those lines.
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2. Proof

2.1. Birationality. As in the previous section we let V be a 4-dimensional vector
space with a fixed symplectic form. Let F denote the ‘isotropic flag variety’

F = {L ⊂ S ⊂ V }

where S ⊂ V is a Lagrangian subspace, and L ⊂ S is a line. Obviously F is a P1

bundle over LGr(V ), it is PS. It it also a P1 bundle over PV , in fact:

F ∼= P(L⊥/L)

This is because a plane S contains a line L iff the determinant ∧2S ⊂ ∧2V lies in
the subspace (V/L) ⊗ L ⊂ ∧2V , and S is additionally Lagrangian iff ∧2S lies in
(L⊥/L)⊗ L.
F carries two obvious line-bundles, L and ∧2S, and we let

X̂ = Tot
(
L⊗∧2S −→ F

)
be the total space of their product. There is an evident birational equivalence from
X̂ to X+ given by ‘forgetting L’, at the zero sections this map is the P1 bundle

F → LGr(V ), and away from the zero sections it is an isomorphism. In fact X̂ is
the blow-up of X+ along LGr(V ).

There is also a birational equivalence from X̂ to X− given by the map ‘forget
S’, i.e. we have an inclusion of bundles over F

∧2S ⊗ L ↪→ (L⊥/L)⊗ L2

and the latter space is a P1 bundle over X−, so the composition gives a map from

X̂ to X−. Again this map is an isomorphism away from the zero sections, and

extends the P1 bundle F → PV . Also X̂ is the blow-up of X− along PV .
Consequently, X+ and X− are birationally-equivalent.

2.2. Derived equivalence. Kuznetsov [Kuz] found a full strong exceptional col-
lection on LGr(V ) consisting of the four objects:

O, S∨, ∧2S∨, and (∧2S∨)⊗2

(one rank 2 vector bundle and three line-bundles). Pull these four bundles up to
X+, and let T+ denote their direct sum. On LGr(V ) these four bundles span the
derived category, i.e. there is no non-zero E ∈ Db(LGr(V )) such that applying
Ext•LGr(V )(−, E) gives zero on all four bundles. Since the push-down functor from

Db(X+) to Db(LGr(V )) has no kernel, it follows from adjunction that T+ spans
Db(X+). Moreover one can calculate that T+ has no higher self-Ext groups (Lemma
2.3) so it is a tilting bundle on X+. Hence Db(X+) is equivalent to the derived
category Db(EndX+(T+)) of the endomorphism algebra of T+ (see for example [HV,
Thm. 7.6]).

Now let Xo ⊂ X± denote the open set where X+ and X− are isomorphic, namely
the complement of the zero sections, and consider the vector bundle To = T+|X0

.
We claim that that To extends to a vector bundle T− on X− which is a tilting
bundle. This claim immediately implies the derived equivalence - since X+ and X−
are isomorphic outside of co-dimension two, we have that EndX−(T−) is canonically
isomorphic to EndX+(T+), and hence:

Db(X+) ∼= Db(EndX+(T+)) = Db(EndX−(T−)) ∼= Db(X−)
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Now we prove the claim. First we extend each of the four summands of T0 to vector
bundles on X−. The rank 1 summands are obvious: over Xo, the line bundles ∧2S∨

and L are canonically isomorphic, so the necessary line bundles on X− are:

O, L, and L2

We also need to extend the rank 2 summand S∨ from Xo to X−. Note that over
Xo we have a short-exact-sequence:

S −→ L⊥ ⊕ S/L −→ L⊥/L

This is a just a formal consequence of the inclusions L ⊂ S ⊂ L⊥. Now S/L ∼=
∧2S⊗L−1 ∼= L−2, and the second map in the above sequence can be extended over
X− as the map

(1,−τ) : L⊥ ⊕ L−2 −→ L⊥/L

where τ is the tautological section of (L⊥/L)⊗ L2. This map has full rank every-
where, so its kernel is a rank 2 vector bundle on X− which we denote by Σ. By
construction Σ|Xo is S. Also note that Σ fits into a short-exact-sequence

L −→ Σ −→ L−2

(in fact it is the unique such non-trivial extension by Lemma 2.7). So S∨ extends
to the bundle Σ∨, which is a non-trivial extension of L−1 by L2.

We have extended To to a vector bundle T− on X−, namely:

T− = O ⊕ Σ∨ ⊕ L⊕ L2

It is clear that T− spans Db(X−), since the sub-category split-generated by T−
contains O, L, L2 and L−1, and these four line bundles span Db(X−) by adjunc-
tion. Hence it only remains to show that T− has no higher self-Ext groups. One
can calculate that H>0(X−, L

k) = 0 for k ≤ 2, that H1(X−, L
3) = C, and

that H>1(X−, L
3) = 0 (Lemmas 2.5 and 2.7), from which it follows easily that

Ext>0
X−

(T−, T−) = 0.
This concludes the proof of Theorem 1.1.

2.3. Cohomology calculations. We now give some details of the cohomology
calculations required for the argument of the previous section.

Lemma 2.1. Consider the bundle S∨ on the Grassmannian Gr(2, V ). If m ≥ −2,
then for any k ≥ 0 we have:

H>0
(

Gr(2, V ), Symk S∨ ⊗ (∧2S)−m
)

= 0

Setting m = −3, we have:

H•
(

Gr(2, V ), S∨ ⊗ (∧2S)3
)

= 0 and H•
(

Gr(2, V ), (∧2S)3
)

= 0

Proof. This is a standard Borel–Weil–Bott calculation, see e.g. [Kuz]. �

Lemma 2.2. On the Langrangian Grassmannian LGr(V ), if m ≥ −1 then for any
k ≥ 0 we have:

H>0
(

LGr(V ), Symk S∨ ⊗ (∧2S)−m
)

= 0

Setting m = −2, we have:

H•
(

LGr(V ), S∨ ⊗ (∧2S)2
)

= 0 and H•
(

LGr(V ), (∧2S)2
)

= 0

Proof. LGr(V ) is a linear hyperplane in Gr(2, V ), so we use the short-exact-sequence

∧2S −→ O −→ OLGr(V )

on Gr(2, V ) together with Lemma 2.1. Alternatively one may compute directly
using Borel–Weil–Bott for Sp(4). �
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Lemma 2.3. On X+, for the bundle

T+ = O ⊕ S∨ ⊕∧2S−1 ⊕ (∧2S)−2

we have:

Ext>0
X+

(T+, T+) = 0

Proof. Since S = S∨ ⊗∧2S, and

End(S∨) = O ⊕ (Sym2 S∨ ⊗∧2S)

we need to show that the following bundles have no higher cohomology on X+:

i) (∧2S)−k, for k ∈ [−2, 2],
ii) S∨ ⊗ (∧2S)−k, for k ∈ [−2, 1], and
iii) Sym2 S∨ ⊗∧2S.

Pushing down to LGr(V ), this is equivalent to asking that the same bundles have
no higher cohomology on LGr(V ) after we tensor them with Symn S∨ ⊗ (∧2S)−n,
for any n ≥ 0. This follows from Lemma 2.2 and the Pieri formula. �

Lemma 2.4. Consider the bundle V/L on PV . For k ≥ 1 and m ≥ k− 1 we have:

H>0
(
PV, Symk(V/L)∨ ⊗ L−m

)
= 0

Proof. Borel–Weil–Bott. �

Lemma 2.5. On the space X−, for m ≥ −2 we have:

H>0
(
X−, L

−m) = 0

Proof. On PV we have short exact sequence:

(L⊥/L)⊗ L2 −→ (V/L)⊗ L2 −→ L

Hence X− is a divisor in the space

Y = Tot
(
(V/L)⊗ L2 −→ PV

)
cut out by a section of L. So we compute H•(X−, L

−m) using the Koszul complex

(2.6) L−m−1 −→ L−m −→ OX−⊗ L−m

on Y . Hence it’s sufficent to show that H>0(Y, L−m) vanishes for m ≥ −2. Pushing
down to PV , we have

H•(Y, L−m) =
⊕
k≥0

H•
(
PV, Symk(V/L)∨ ⊗ L−2k−m

)
and Lemma 2.4, plus the fact that H>0(PV,L−m) = 0 for m ≥ −3, ensures that
all higher cohomology vanishes. �

Lemma 2.7. On X− we have:

H1(X−, L
3) = C and H>1(X−, L

3) = 0

Proof. By the exact sequence (2.6) and the fact that H>0(Y,L2) = 0, the higher
cohomology of L3 is the same on X− as it is on Y . Projecting from Y to PV and
applying Lemma 2.4, we see that the only contribution to this higher cohomology
is given by

H>0
(
PV, (V/L)∨ ⊗ L

)
which is easily calculated. �
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3. A remark on the Fourier-Mukai kernel

We are still missing a ‘geometric’ construction of the derived equivalence, i.e. a
reasonable description of the Fourier-Mukai kernel, but here are a few observations
in that direction.

One might reasonably guess that the kernel for our equivalence is supported on
the natural geometric correspondence X̂ ⊂ X+ ×X−. Unfortunately this guess is
wrong. Our equivalence, considered as a functor Φ : Db(X−) → Db(X+), has the
effect

Φ : Lk 7→ (∧2S)−k

for k = 0, 1 or 2, and it sends L−1 to the mapping cone[
(∧2S)−2 −→ S∨

]
∈ Db(X+)

on the tautological section. Using the Koszul resolution of the zero section, one
sees that this cone is quasi-isomorphic to the ideal sheaf of the zero section, twisted
by ∧2S.

Now consider the Fourier-Mukai kernel OX̂ , i.e. the functor ‘pull-up to X̂ and
then push down’. By elementary geometric arguments one sees that this functor
agrees with Φ on the objects O, L and L−1. However, it sends L2 to a length 2
complex whose homology in degree zero is (∧2S)−2, and in degree 1 is the sky-
scraper sheaf OLGr of the zero section, twisted by ∧2S.

Let us introduce a second kernel:

K = OPV×LGr(V ) ⊗ L2 ⊗∧2S[2] ∈ Db(X− ×X+)

It’s easy to see that the associated functor sends O, L and L−1 to zero, but it sends
L−2 to the object OLGr ⊗ ∧2S[−1]. So the kernel for our equivalence Φ must be
given by the cone on some morphism between OX̂ and K. In particular, its support

is X̂ ∪
(
PV × LGr(V )

)
.
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